

Global Wheat Price Shocks and Firm-Level Export Price Setting

Daniele Curzi ¹ Dela-Dem D. Fiankor ² Roberto Solazzo ³ Daniele Valenti ⁴

December 12, 2025

¹University of Milano, Italy, ²University of Göttingen, Germany ³CREA, Italy ⁴Politecnico di Milano, Italy

11th OEET Workshop: Global Trade Shocks and Geopolitical Uncertainty Implications for Food Security in Emerging Economies. University of Torino, Italy

Outline

Motivation

Data

Empirical framework

Results

Summary

Why this matters

- Recent shocks (e.g., Covid, Conflicts, Climate perturbations) exposed the fragility of our food systems
- Compromise consumer and producer welfare, and raise food security concerns
- How do firms that use agricultural products as intermediate inputs respond to shocks?
- Case study: **Wheat markets**
 - Cereal prices, including wheat, are key agricultural prices
 - Russia–Ukraine war intensified already high post-COVID food prices.
 - FAO Food Price Index peaked at 160% in March 2022.
 - Wheat prices exceeded 500 USD/mt in May 2022.
 - Wheat prices have shown repeated volatility (2007/08, 2010/11, 2012/13, 2022).
- Key question: **How resilient are wheat-using firms to global price shocks?**
 - Firms may adjust via output reduction, wage cuts, or labour reductions.
 - We study how processing firms adjust export prices to global grain market shocks.

Contributions

- Price transmission
 - Commodity price shocks are incompletely passed through the value chain (Nakamura and Zerom, 2010; Richards and Hamilton, 2015)
 - We focus on **export prices** (not retail) and on **determinants of global wheat markets**, not simple price pass-through.
- Export price-setting & PTM
 - How firms adjust export prices in response to trade costs (Atkeson and Burstein, 2008), based on imperfect competition and variable markups (Melitz–Ottaviano framework).
 - We link the **macro** with the **micro**
- Commodity price dynamics
 - SVAR-based analyses of supply and demand shocks for wheat, coffee, corn.
 - Our model incorporates production and stocks, improving on sign-restricted VARs.

Outline

Motivation

Data

Empirical framework

Results

Data: 1. Aggregate annual time-series data

Period: 1970–2021 (annual data)

Endogenous variable vector:

$$\mathbf{y}_t = [\Delta q_t, y_t, \Delta i_t, \Delta p_t]$$

- Δq_t : Growth rate of global wheat production
- y_t : Growth rate of world industrial production
- Δi_t : Inventory changes
- Δp_t : Growth rate of real wheat spot price (deflated by U.S. CPI)

Data source: USDA NASS, Agricultural Prices database.

Price reference: Hard Red Winter (HRW) wheat (Kansas City).

Data: 2. Firm-Level Customs Transaction Data

Source: ISTAT (Italian National Institute of Statistics)

Coverage:

- Period: 2004–2021
- Italian firms exporting pasta and wheat derivatives
- Product resolution: 8-digit CN level
- Destination-specific export records over time

Outline

Motivation

Data

Empirical framework

Results

A Bayesian Structural VAR Model of the Global Wheat Market

Structural VAR specification:

$$\mathbf{Ay}_t = \mathbf{b}_0 + \sum_{l=1}^2 \mathbf{B}_l y_{t-l} + \mathbf{u}_t$$

Structural shocks:

$$\mathbf{v}_t = [v_{1t}, v_{2t}, v_{3t}, v_{4t}]' \quad \text{with} \quad E[\mathbf{v}_t \mathbf{v}_t'] = \mathbf{D}$$

System of structural equations:

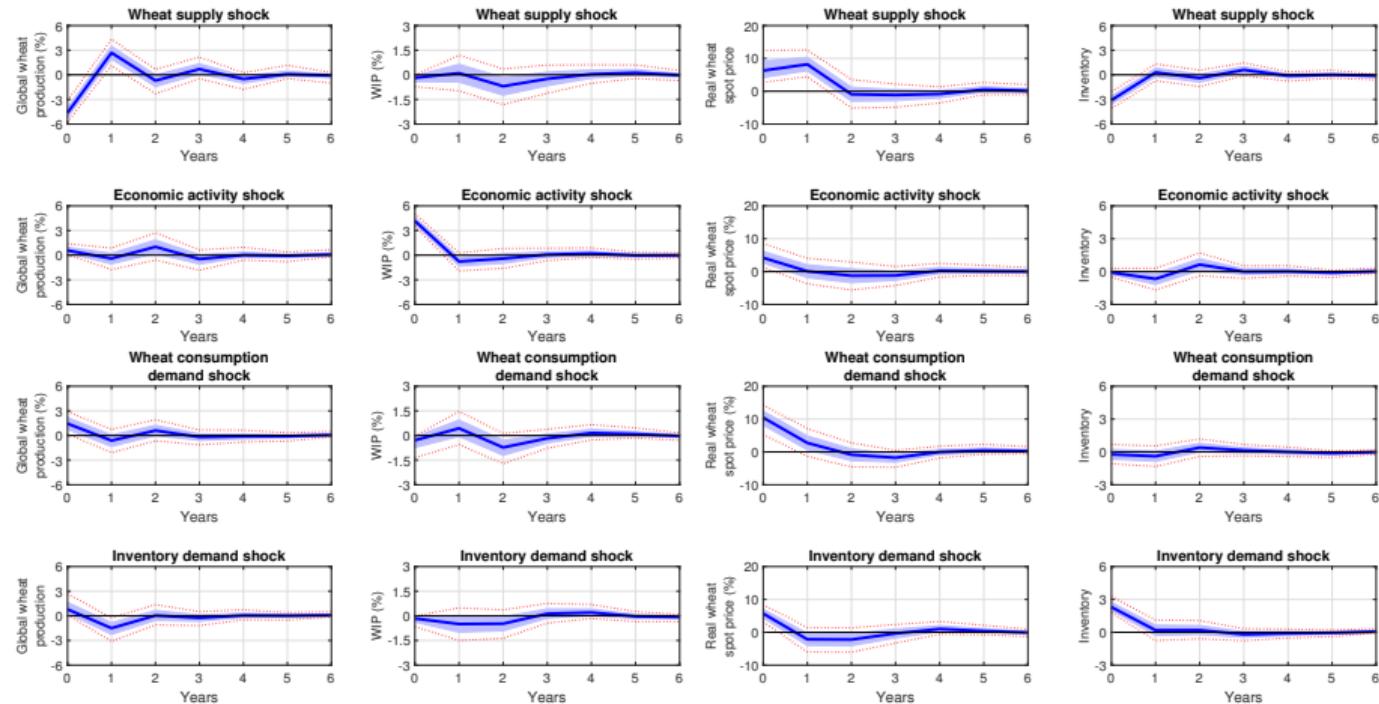
$$\Delta q_t = a_{qp}^s \Delta p_t + \mathbf{b}_1' x_{t-1} + v_{1t}$$

$$y_t = a_{yp} \Delta p_t + \mathbf{b}_2' x_{t-1} + v_{2t}$$

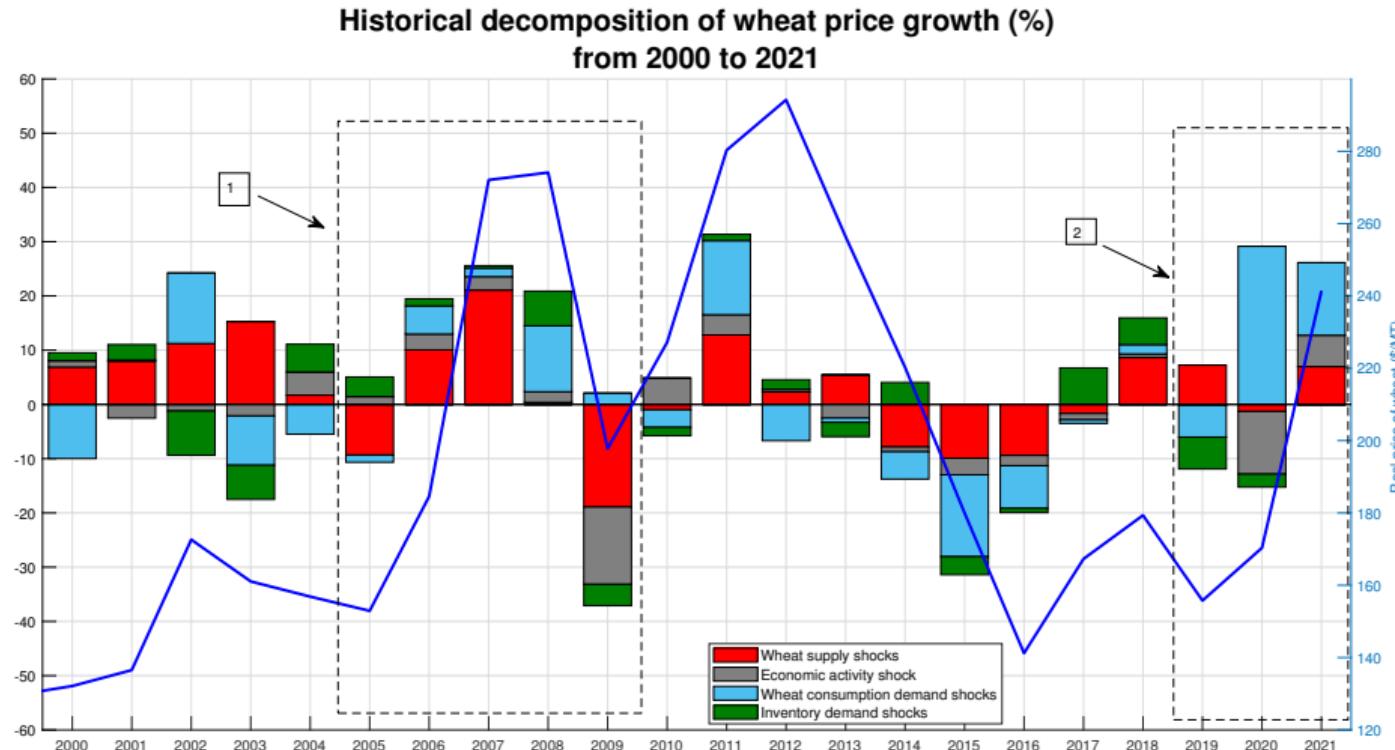
$$\Delta q_t = a_{qy}^d y_t + a_{qp}^d \Delta p_t + \Delta i_t + \mathbf{b}_3' x_{t-1} + v_{3t}$$

$$\Delta i_t = a_{iq} q_t + a_{ip} \Delta p_t + \mathbf{b}_4' x_{t-1} + v_{4t}$$

Identification and Interpretation of Structural Shocks


Structural shocks identified:

- **Wheat supply shock (v_{1t})**: negative shock shifts supply left (weather, disease, wars).
- **Economic activity shock (v_{2t})**: global business cycle expansion shifts demand right.
- **Consumption demand shock (v_{3t})**: shocks to food, feed, or industrial demand beyond business cycle effects.
- **Inventory demand shock (v_{4t})**: speculative/expectations-driven demand for storage.


Identification:

- Structural parameters (A, B, D) identified using the Baumeister–Hamilton (2015) Bayesian algorithm.
- Step 1: impose informative priors on structural parameters.
- Step 2: draw from posterior using Random-Walk Metropolis–Hastings.

Impulse responses of the variables to the structural shocks of model 1

Cumulative effect of each structural shock on wheat price growth (%)

A reduced form gravity model of Italian firm-level exports

Estimate how structural shocks to the global wheat price affect firm-level export prices of pasta and wheat derivatives.

$$\ln(X_{fkd,t}) = \beta_0 + \beta_1 \Delta \hat{p}_t^{v_{s,t}} + \beta_2 \ln(1 + \tau_{kd,t}) + \mathbf{b}' \mathbf{X}_{dt} + \gamma_{fkd} + \epsilon_{fkd,t}^{v_n}$$

- $\ln(X_{fkd,t})$: firm–product–destination unit values.
- $\Delta \hat{p}_t^{v_{s,t}}$: cumulative impact of structural shock s on global wheat price.
- β_1 : elasticity of firm export prices to unexpected global wheat price changes.
- \mathbf{X} : vector of destination-time controls; $\tau_{kd,t}$: destination tariffs.

Fixed effects and identification:

- γ_{fkd} : firm–product–destination FE (absorbs distance, contiguity, firm productivity, etc.).
- Error term ($\epsilon_{fkd,t}^{v_n}$) clustered by destination and year.

A reduced form gravity model of Italian firm-level exports: Asymmetric Effects

Structural shocks s can be positive or negative \Rightarrow export price responses may be asymmetric.

Asymmetric model:

$$\ln(X_{fkd,t}) = \beta_0 + \beta_1 \Delta^+ \hat{p}_t^{V_{st}} + \beta_2 \Delta^- \hat{p}_t^{V_{st}} + \beta_3 \ln(1 + \tau_{kd,t}) + \mathbf{b}' \mathbf{X}_{dt} + \gamma_{fkd} + \epsilon_{fkd,t}^{V_n}$$

Shock decomposition:

- $\Delta^+ \hat{p}_t^{V_{st}} = \Delta \hat{p}_t^{V_{st}}$ if shock effect on wheat price is positive, else 0.
- $\Delta^- \hat{p}_t^{V_{st}} = \Delta \hat{p}_t^{V_{st}}$ if shock effect is negative, else 0.

Outline

Motivation

Data

Empirical framework

Results

The effect of global wheat market shocks on firm-level export prices

Dependent variable	$\ln X_{fpdt}$	$\ln X_{fpdt}$	$\ln X_{fpdt}$	$\ln X_{fpdt}$
	(1)	(2)	(3)	(4)
Wheat Supply shocks _t	0.198*** (0.038)			
Economic activity shocks _t		0.639*** (0.081)		
Consumption demand shocks _t			0.044** (0.022)	
Inventories demand shocks _t				-0.022 (0.059)
Controls	Yes	Yes	Yes	Yes
Firm-product-destination FEs	Yes	Yes	Yes	Yes
Observations	246030	246030	246030	246030
R^2	0.138	0.142	0.134	0.134

Notes: All models are estimated using ordinary least squares. ***, ** and * denote significance at 1%, 5% and 10% respectively.

Heterogeneous effects

- Heterogeneous effects by
 1. Product (pasta and pasta derivatives)
 2. Distance to destination
 3. Firm size

The effect of global wheat market shocks on firm-level export prices

	(1)	(2)	(3)	(4)
Wheat Supply shocks $_{t}^{+}$	−0.149** (0.064)			
Wheat Supply shocks $_{t}^{-}$	0.252*** (0.043)			
Economic activity shocks $_{t}^{+}$		1.637*** (0.259)		
Economic activity shocks $_{t}^{-}$		−0.203*** (0.063)		
Consumption demand shocks $_{t}^{+}$			0.028 (0.033)	
Consumption demand shocks $_{t}^{-}$			−0.216*** (0.042)	
Inventories demand shocks $_{t}^{+}$				−0.066 (0.047)
Inventories demand shocks $_{t}^{-}$				−0.077 (0.146)
Controls	Yes	Yes	Yes	Yes
Firm-product-destination FEs	Yes	Yes	Yes	Yes
N	246030	246030	246030	246030

Notes: All models are estimated using ordinary least squares. *** ** and * denote significance at 1%, 5% and 10% respectively.

Looking ahead

- Clarify assymetric effects
- Does the price effects translate into volume effects?

Thank you!

Questions?

References i

Atkeson, A. and Burstein, A. (2008). Pricing-to-market, trade costs, and international relative prices. *American Economic Review*, 98(5):1998–2031.

Lloyd, T. (2017). Forty years of price transmission research in the food industry: Insights, challenges and prospects. *Journal of Agricultural Economics*, 68(1):3–21.

Meyer, J. and von Cramon-Taubadel, S. (2004). Asymmetric price transmission: a survey. *Journal of Agricultural Economics*, 55(3):581–611.

Nakamura, E. and Zerom, D. (2010). Accounting for incomplete pass-through. *The review of economic studies*, 77(3):1192–1230.

Peltzman, S. (2000). Prices rise faster than they fall. *Journal of Political Economy*, 108(3):466–502.

Richards, T. J. and Hamilton, S. F. (2015). Variety pass-through: An examination of the ready-to-eat breakfast cereal market. *Review of Economics and Statistics*, 97(1):166–180.