

# FOOD CONNECTIONS: INTERNATIONAL TRADE, EXTREME EVENTS AND SHOCK PROPAGATION

---

Emile van Ommeren – **Stefano Schiavo** | University of Trento

Giuseppe Mangioni – Marco Grassia | **University of Catania**

**December 12, 2025**

11th OEET Workshop

*Global Trade Shocks and Geopolitical Uncertainty: Implications for Food Security in Emerging Economies*



Finanziato  
dall'Unione europea  
NextGenerationEU



Ministero  
dell'Università  
e della Ricerca



Italiadomani  
PIANO NAZIONALE  
DI RIPRESA E RESILIENZA



UNIVERSITÀ  
DI TRENTO

# GLOBALIZATION OF FOOD – TRADE AND FOOD SECURITY

- over the last 40 years trade in agricultural goods has increased six-fold
- around 25% of agricultural production is shipped abroad

→ **globalization of agriculture**

## What is the impact of trade on food security?

- risk **diversification**
- de-coupling population growth from availability of local resources
- **exposure** to shocks originating elsewhere
- dependence on other countries

→ use **network-based simulations** to address the issue

## METHODS

- simple **diffusion model** to simulate impact of local/global shocks to agricultural production
- **three main staples:** *Corn, Rice, Wheat* (more than 50% of global caloric intake)
- 3 weighted and directed networks of  $\approx 150$  countries connected by trade flows
- link weight = total **calories** embedded in trade flows
- investigate the impact of specific **shock scenarios**
  1. country-specific shock (*dust bowl* in the US)
  2. global food system shock (climate change)
  3. actual shock to validate the model (Ukraine war)

## BASELINE MODEL SETUP

---

## MODEL SUMMARY

We model shock diffusion along the agricultural trade network as follows:

1. **Price Effect:** Production shock → global price increase
2. **Import Response:** Price hikes reduce import demand based on crop- and country-specific elasticities
3. **Export Reduction:** Countries limit exports to meet domestic needs
4. **Reserve Usage:** Reserves (50% of available stock) deployed to compensate lower import supply
5. **Consumption Impact:** Final absorption through reduced consumption  
Simulation stops when no country is able to further modify its trade flows to compensate for shortfall in food availability

## STEP 1: GLOBAL PRICE EFFECT OF A PRODUCTION SHORTFALL

- for every 1% loss in global Kcal from cereal staples (wheat, corn, rice, soybeans), global prices increase 7% for all commodities hit by the shock (taken from econ literature and recent work by World Food Program)
- **price increase** is assumed **homogeneous across countries** (global markets)

e.g. Ukraine shock:  $-4.75\%$  Kcal (wheat + corn)  $\Rightarrow +14.59\%$  price

$$\Delta p = 7 \times -\Delta Kcal \times \frac{p_{Wheat} + p_{Corn} + p_{Rice} + p_{Soybeans}}{p_{Wheat} + p_{Corn}}$$

- prices are in USD per Kcal
- the denominator includes only commodities hit by the shock

## STEP 2: IMPORT DEMAND RESPONSE

- countries reduce their demand for imported staples according to country- and crop-specific elasticities
- available long-run elasticities divided by 20 to account for crisis conditions (limited ability to diversify away from specific products)
- average short-term elasticity:  $\approx -0.04$  consistent with existing studies (Roberts and Schlenker, 2009)
- for each country  $j$  and commodity  $c$  the new import level is:

$$\bar{M}_{jc} = M_{jc(t=0)} \times [1 + (\Delta p_c \times \varepsilon_{jc})]$$

- where  $\varepsilon_{jc} < 0$  and  $M_{jc(t=0)}$  represent pre-shock imports
- the **price increase reduces demand** and absorbs part of the shock

**note:** distributional effects of price increase not incorporated in the model

## STEP 3: EXPORT REDUCTION AS A TRANSMISSION CHANNEL

- domestic absorption is given by the difference between production, net export and reserve usage
- $C_{jc} = Prod_{jc} - X_{jc} + M_{jc} + \Delta R_{jc}$
- at this step ( $t = 0$ ), reserve usage is set to zero  $\Delta R_{jc(t=0)} = 0$

## STEP 3: EXPORT REDUCTION AS A TRANSMISSION CHANNEL

- domestic absorption is given by the difference between production, net export and reserve usage
- $C_{jc} = Prod_{jc} - X_{jc} + M_{jc} + \Delta R_{jc}$
- at this step ( $t = 0$ ), reserve usage is set to zero  $\Delta R_{jc(t=0)} = 0$
- when the production shock is not compensated by a fall in import demand by trade partners, **countries compensate by reducing exports**

$$X_{jc(t+1)} = \max\{X_{jc(t)} - dd_{jc(t)}, 0\}$$

- with  $dd_{jc(t)} = C_{jc(t=0)} - [Prod_{jc(t)} - X_{jc(t)} + M_{jc(t)} + \Delta R_{jc(t)}]$
- the reduction in exports is distributed across trade partners based on their relative GDP (size and purchasing power effect)

## STEP 4: RESERVE USAGE

- countries endowed with a certain amount of (country- and crop-specific) food reserves  $R_{jc}$
- each country can use up to 50% of its initial stock of **reserves** to **compensate for a shortfall in food availability**
- *baseline model*: only reserves of the specific crop can be used
- $\Delta R_{jc} = R_{jc(t=0)} - \Delta M_{jc}$  subject to:  $\Delta R_{jc} < 0.5 \times R_{jc(t=0)}$
- *extension*: when reserves are depleted, countries can tap into reserves of other crops → this creates linkages across commodities
- the degree of substitutability depends on dietary diversity and is country-specific

## STEP 5: SHOCK PROPAGATION AND FINAL ADJUSTMENT

- export restrictions create a cascading effect through the network
- the simulation stops when no country can further reduce its exports or tap into reserves
- any demand deficit that cannot be propagated is then absorbed by reducing consumption
- at the end of the simulation we can compute the ultimate impact on caloric intake, food and nutrition security

## IMPLEMENTATION

---

# DATA

- use bilateral trade data from FAO for 2016–2018 to build benchmark network (pre-shock reference point)
- convert quantity traded into Kcal using FAO conversion tables
- elasticities taken from Ghodsi et al. (2016)
- food prices, population and GDP taken from the World Bank

# DESCRIPTIVE STATISTICS

- we have 3 networks composed by 147/148 countries (nodes) and a number of bilateral links ranging from 1,765 (wheat) to 2,440 (rice)
- *density* (share of active over potential links) ranges from 8 to 11%
- around 1/3 of links are reciprocal
- diameter (shortest path length between most distant nodes) 6 or 7
- networks are (weakly) *disassortative*
- imports less concentrated than exports (more importers than exporters)

|                | Corn  | Rice  | Wheat |                    | Corn   | Rice   | Wheat   |
|----------------|-------|-------|-------|--------------------|--------|--------|---------|
| nodes          | 147   | 148   | 147   | in-centralization  | 0.23   | 0.21   | 0.19    |
| edges          | 2129  | 2440  | 1765  | out-centralization | 0.72   | 0.81   | 0.64    |
| density        | 9.9%  | 11.2% | 8.2%  | diameter           | 7      | 6      | 6       |
| reciprocity    | 39.2% | 32.5% | 34.4% | assortativity      | -0.17  | -0.23  | -0.22   |
| median in-deg  | 13    | 14    | 11    | median in-str*     | 445.35 | 255.49 | 1523.21 |
| median out-deg | 6     | 5.5   | 2     | median out-str*    | 9.36   | 1.82   | 1.67    |

\* million Kcal

## SHOCK SCENARIO #1: US Dust Bowl

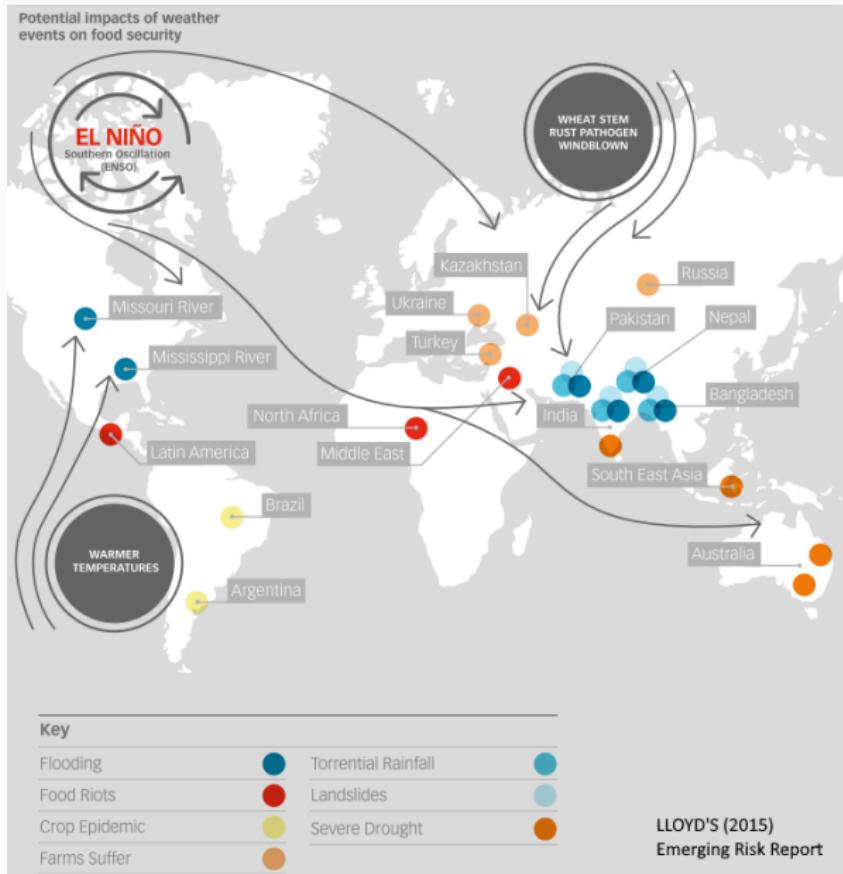
- “Dust Bowl” era (1930–1936) features three of six driest and hottest US growing seasons since the beginning of the 20th century
- likelihood of such events (historically  $\approx 1 : 100$  years) could be reduced to  $1 : 40$  years due to climate change
- despite advancements in farming practices, a 1936-style drought would still result in losses of about **-40% for corn, -30% for wheat and -20% of rice in the US** (Glotter and Elliot, 2016)
- US is a major wheat exporter (especially to developing countries) and accounts for about 35% of global corn exports
- shock hitting a **single large exporter**

## SHOCK SCENARIO #2: GLOBAL Food SYSTEM SHOCK

- we consider a severe **global agricultural crisis** scenario developed by Lloyd's in 2015
- the probability of such an event is estimated to be higher than 1 in 200 year (a common benchmark to define extreme events)
- the shock is triggered by a strong warm-phase El Niño Southern Oscillation (ENSO), which leads to **extreme weather events** (severe flooding and major droughts) and widespread **plant pathogen outbreaks** (in South America and Eurasia) across key food-producing regions
- the combined effects result in significant **global crop production decline** across several countries:
  - 10% Corn
  - 7% Wheat
  - 7% Rice

# SHOCK SCENARIO - Food SYSTEM SHOCK

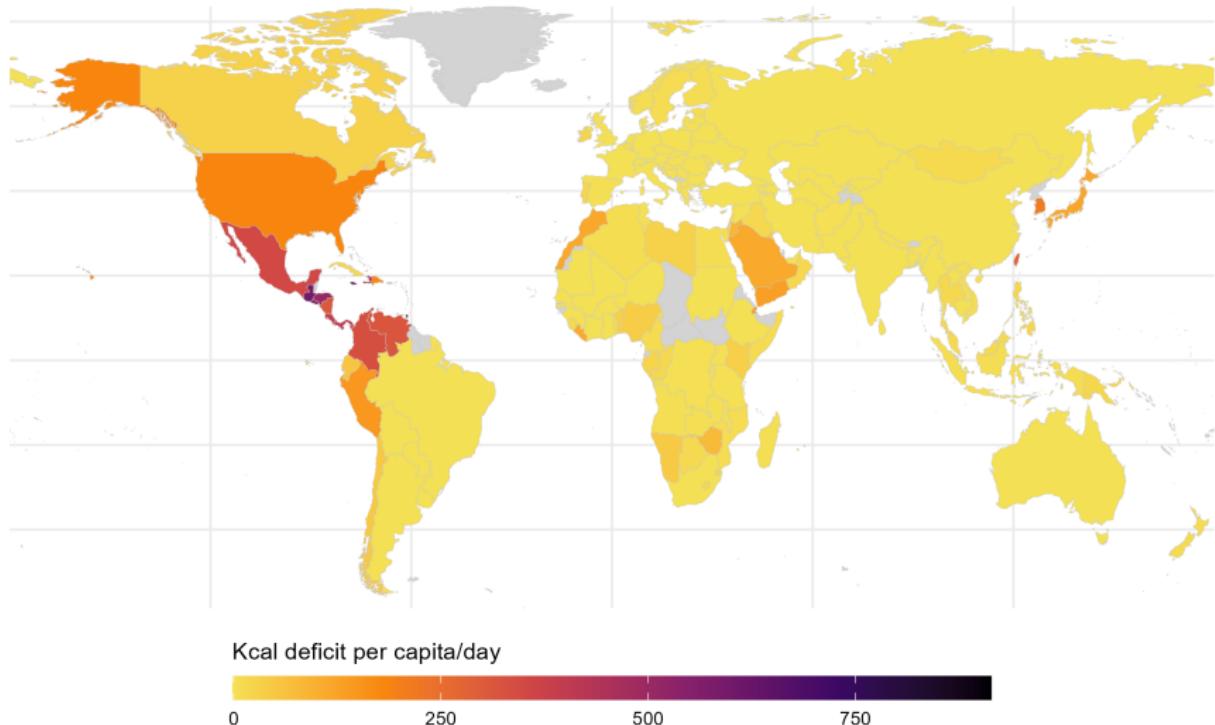
## Corn:


- US –27%

## Wheat:

- US –7%
- India –16%
- Pakistan –15%
- Australia –50%
- Turkey –15%
- Kazakhstan –15%
- Ukraine –15%
- Russia –10%

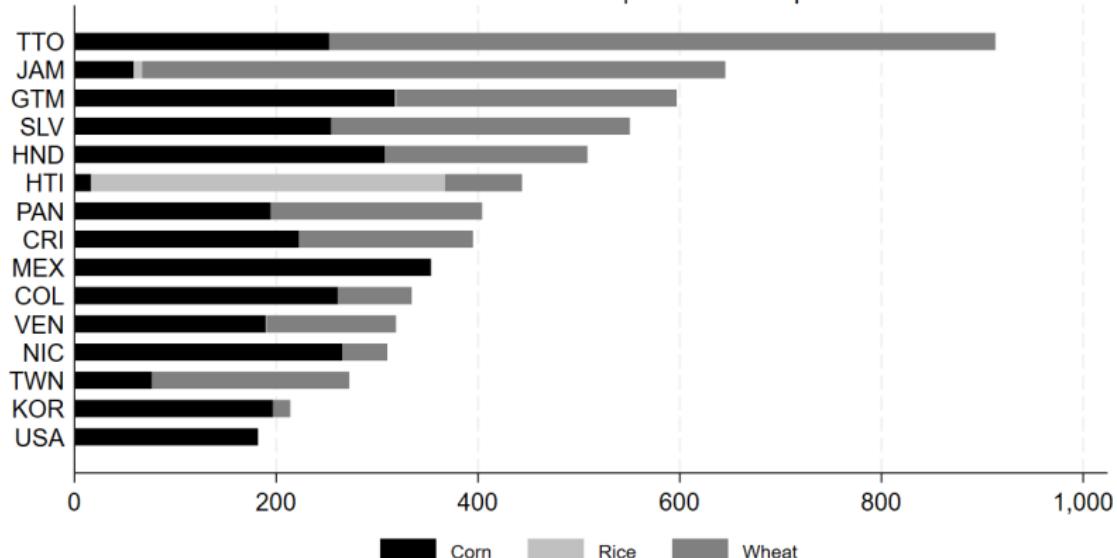
## Rice:


- India –18%
- Bangladesh –6%
- Indonesia –6%
- Vietnam –20%
- Thailand – 10%
- Philippines –10%



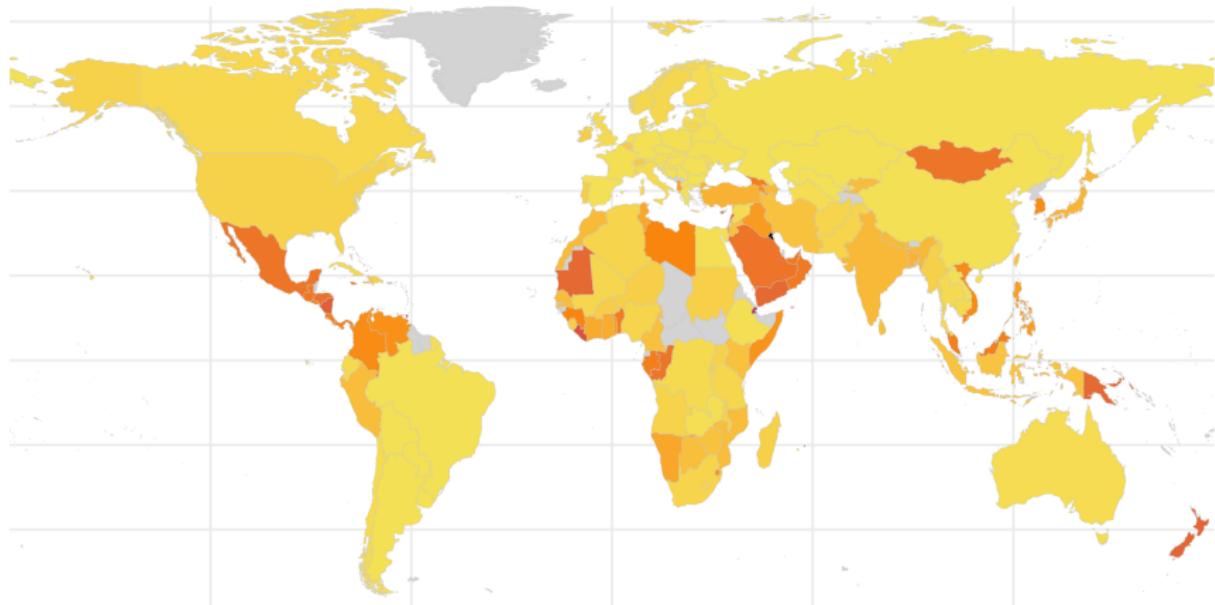
## SIMULATION RESULTS

---


# SIMULATION RESULTS - DUST BOWL SHOCK



# MOST SEVERELY HIT COUNTRIES - DUST BOWL SHOCK


Largest decrease in food availability per capita/day

US Dust Bowl Shock | Baseline setup



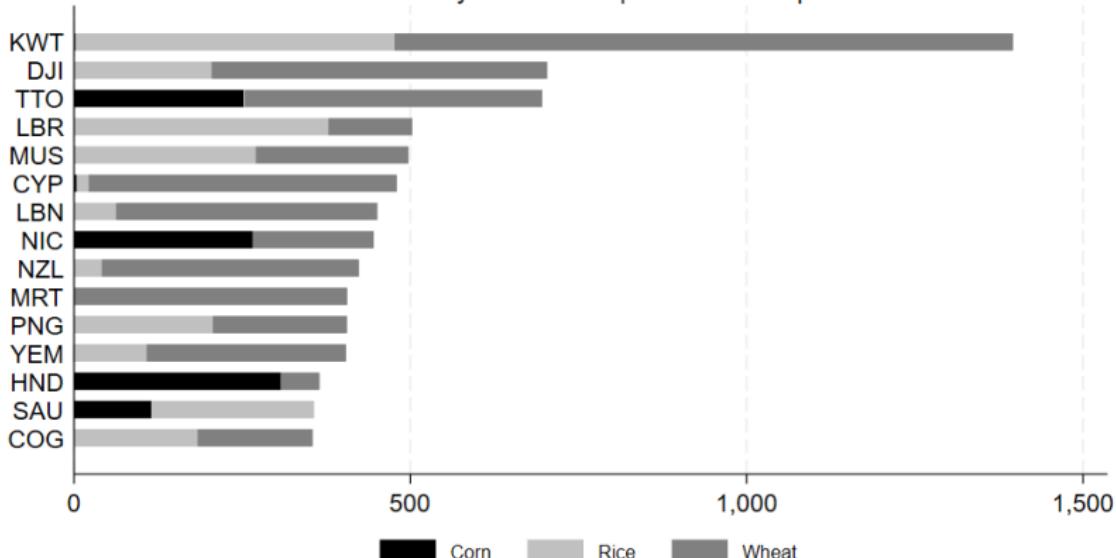
- 13 countries experience a decrease in food availability  $> 250$  kcal/per capita/day
- an additional 31.9 million people become undernourished

# SIMULATION RESULTS - FOOD SYSTEM SHOCK



Kcal deficit per capita/day

0


500

1000

# MOST SEVERELY HIT COUNTRIES - FOOD SYSTEM SHOCK

Largest decrease in food availability per capita/day

Food System Shock | Baseline setup



- 36 countries experience a decrease in food availability  $> 250$  kcal/per capita/day
- an additional 138.2 million people become undernourished

# DESCRIPTIVE NETWORK STATISTICS

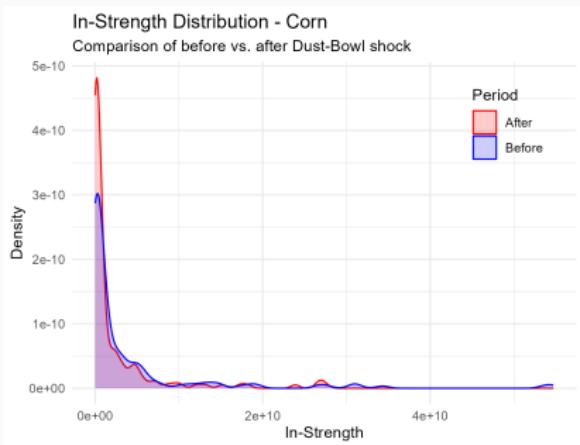
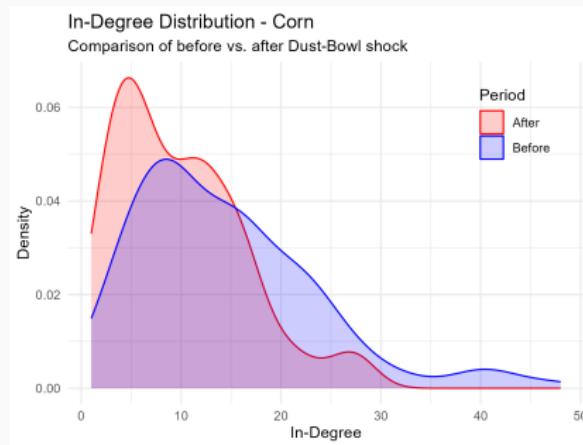
## a) *pre-shock* benchmark

|             | Corn  | Rice  | Wheat |                    | Corn   | Rice   | Wheat  |
|-------------|-------|-------|-------|--------------------|--------|--------|--------|
| nodes       | 147   | 148   | 147   | in-centralization  | 0.230  | 0.214  | 0.185  |
| edges       | 2129  | 2440  | 1765  | out-centralization | 0.716  | 0.806  | 0.644  |
| density     | 9.9%  | 11.2% | 8.2%  | diameter           | 7      | 6      | 6      |
| reciprocity | 39.2% | 32.5% | 34.4% | assortativity      | -0.165 | -0.231 | -0.217 |

## b) *Dust Bowl* shock

|             | Corn  | Rice  | Wheat |                    | Corn   | Rice   | Wheat  |
|-------------|-------|-------|-------|--------------------|--------|--------|--------|
| nodes       | 147   | 148   | 144   | in-centralization  | 0.124  | 0.135  | 0.172  |
| edges       | 1450  | 1659  | 1506  | out-centralization | 0.727  | 0.842  | 0.668  |
| density     | 6.8%  | 7.6%  | 7.3%  | diameter           | 6      | 5      | 6      |
| reciprocity | 25.4% | 15.2% | 28.3% | assortativity      | -0.175 | -0.233 | -0.231 |

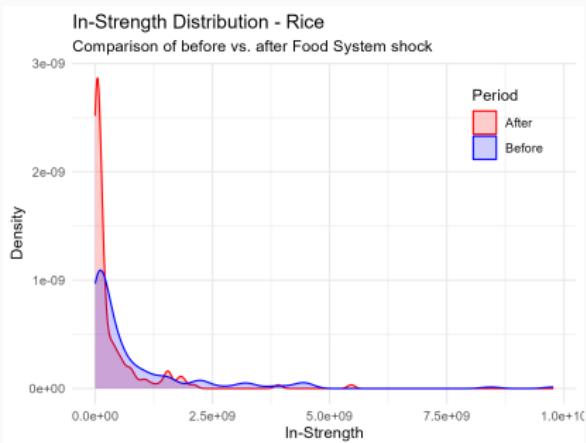
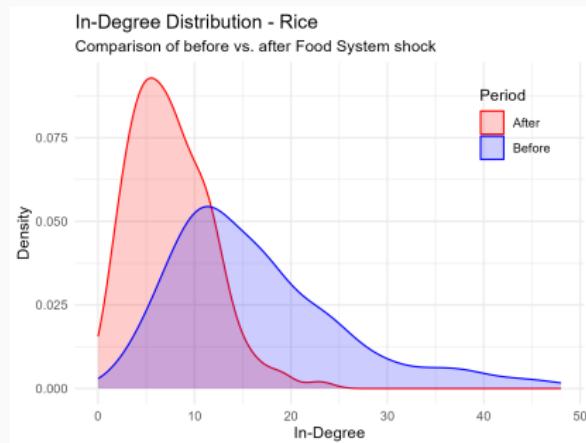
## c) *Food System* shock



|             | Corn  | Rice  | Wheat |                    | Corn   | Rice   | Wheat  |
|-------------|-------|-------|-------|--------------------|--------|--------|--------|
| nodes       | 147   | 148   | 140   | in-centralization  | 0.124  | 0.105  | 0.159  |
| edges       | 1449  | 1109  | 1112  | out-centralization | 0.716  | 0.806  | 0.644  |
| density     | 6.8%  | 5.1%  | 5.7%  | diameter           | 6      | 5      | 6      |
| reciprocity | 25.3% | 12.8% | 24.3% | assortativity      | -0.176 | -0.246 | -0.219 |

# RESERVE USAGE

|                                  | Corn            | Rice           | Wheat           |
|----------------------------------|-----------------|----------------|-----------------|
| <i>Dust Bowl shock:</i>          |                 |                |                 |
| global reserve usage             | -21.90%         | -1.00%         | -6.80%          |
| countries with depleted reserves | 46 (out of 117) | 11 (out of 70) | 39 (out of 127) |
| <i>Food System shock:</i>        |                 |                |                 |
| global reserve usage             | -21.80%         | -23.90%        | -16.40%         |
| countries with depleted reserves | 46 (out of 117) | 29 (out of 70) | 74 (out of 127) |

# IMPACT ON IN-DEGREE & IN-STRENGTH DISTRIBUTION



## Corn - Dust Bowl shock



- shock has large impact on in-degree distribution (left panel) → 32% links dropped
- impact on in-strength distribution (right panel) weaker → mainly weak links that are dropped

# IMPACT ON IN-DEGREE & IN-STRENGTH DISTRIBUTION

## Rice - Food System shock



- 55% links dropped

## OLS REGRESSION – DUST BOWL SHOCK

|                                   | Corn<br>(1) | Rice<br>(2) | Wheat<br>(3) |
|-----------------------------------|-------------|-------------|--------------|
| Export degree (out)               | 33.195      | -0.094      | 0.143        |
| Import degree (in)                | 0.312       | 0.746       | -1.401***    |
| Food reserves (per capita)        | 0.042       | -0.07       | -0.152**     |
| Export strength (per capita)      | -0.012      | 0.015       | -0.007       |
| Import strength (per capita)      | 0.044**     | 0.049*      | 0.055***     |
| Import concentration (C1)         | 46.525**    | 22.413      | 60.461**     |
| Import from origin shock (> 0.25) | 105.223***  | 33.73       | 112.634***   |
| GDP per capita (log)              | -5.582*     | -3.25       | 4.659        |
| Observations                      | 146         | 147         | 146          |
| R-squared                         | 0.55        | 0.17        | 0.37         |
| F-statistic                       | 12.14       | 1.19        | 2.58         |

Constant term non shown. \*\*\* p<0.01, \*\* p<0.05, \* p<0.1.

- large importers tend to suffer larger deficits
- availability of (wheat) reserve stocks reduces the impact of the shock
- import diversification acts as a buffer

## OLS REGRESSION – FOOD SYSTEM SHOCK

|                                   | Corn<br>(1) | Rice<br>(2) | Wheat<br>(3) |
|-----------------------------------|-------------|-------------|--------------|
| Export degree (out)               | -97.656     | -0.385      | -0.261       |
| Import degree (in)                | 0.315       | -0.531      | -1.903       |
| Food reserves (per capita)        | 0.038       | -0.352      | -0.425***    |
| Export strength (per capita)      | -0.011      | -0.02       | -0.016       |
| Import strength (per capita)      | 0.044**     | 0.500***    | 0.161***     |
| Import concentration (C1)         | 46.669**    | 62.527*     | 56.087       |
| Import from origin shock (> 0.25) | 105.207***  | 40.853***   | 75.229***    |
| GDP per capita (log)              | -5.652*     | 6.236       | 19.586*      |
| Production shock (dummy)          |             | 118.206***  | 41.597*      |
| No. of observations               | 146         | 147         | 146          |
| R-squared                         | 0.55        | 0.51        | 0.33         |
| F-statistic                       | 6.22        | 8.28        | 4.74         |

Constant term non shown. \*\*\* p<0.01, \*\* p<0.05, \* p<0.1.

- large importers tend to suffer larger deficits
- availability of (wheat) reserve stocks reduces the impact of the shock
- import diversification acts as a buffer

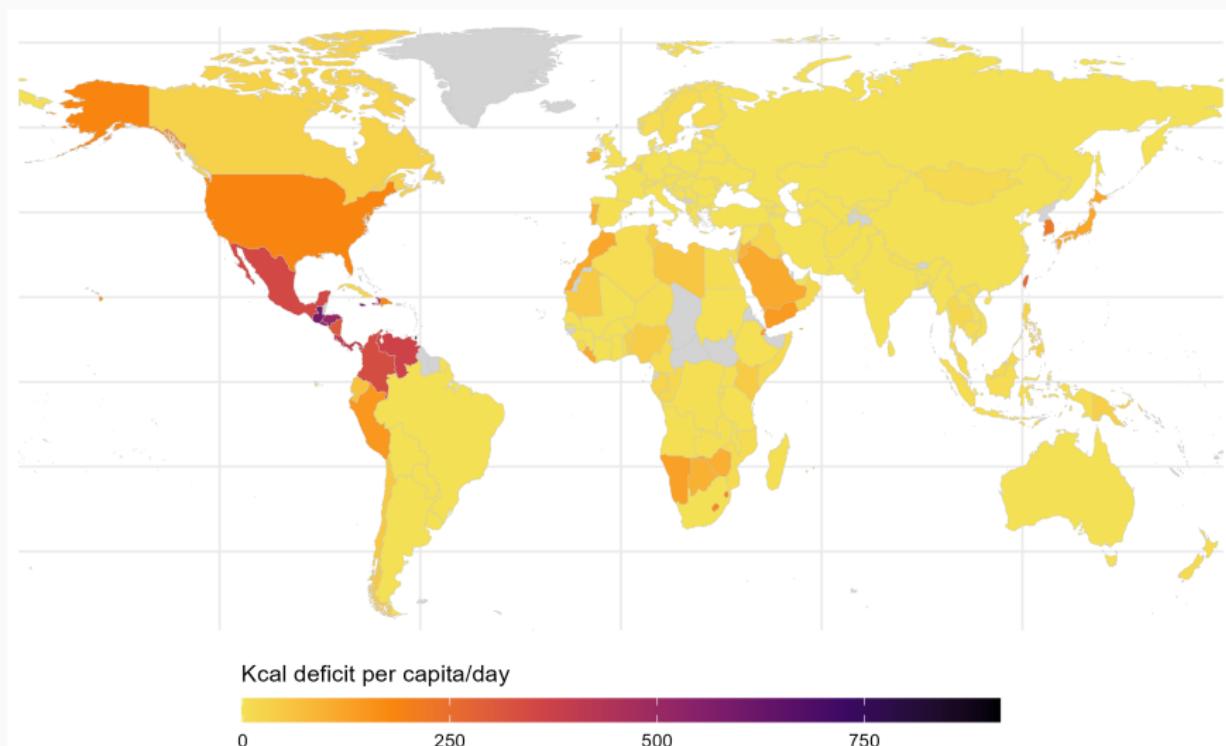
## EXTENSIONS

---

## EXTENSIONS

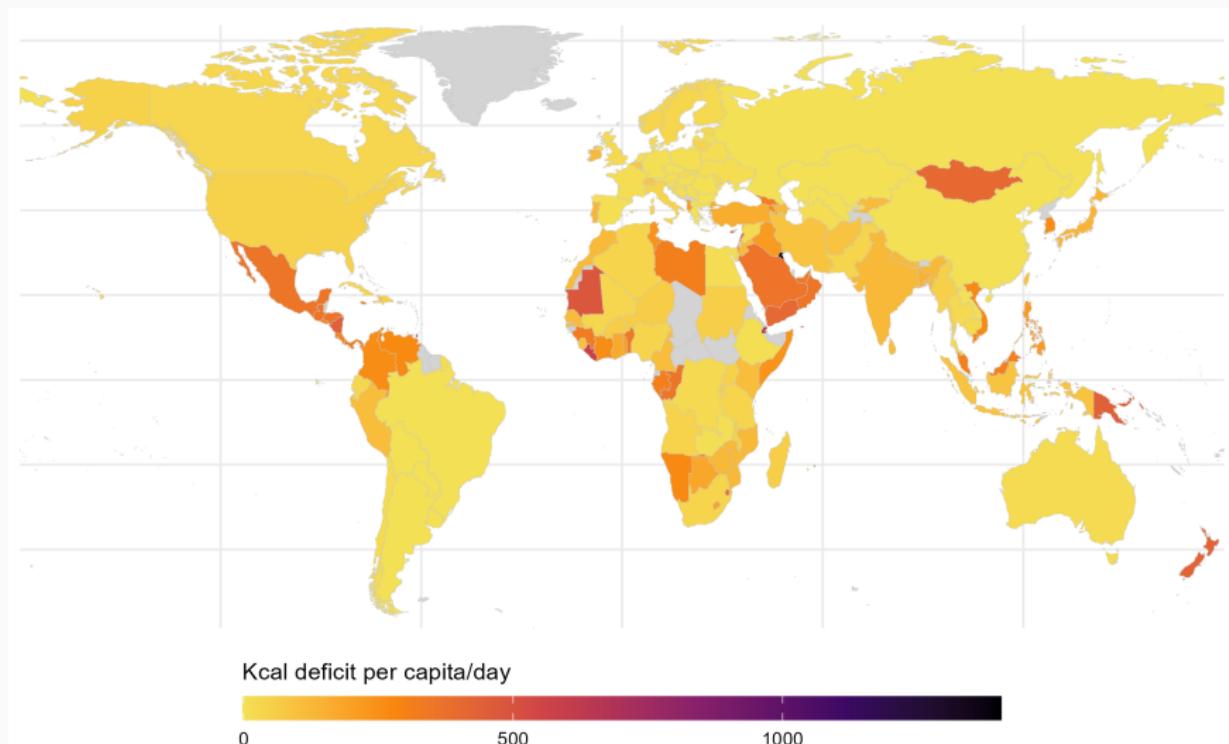
### 1. Non-cooperative behavior

- re-run the simulation **without** allowing countries to use **reserves**
- reserve only used at the end of the simulation to compensate for existing deficits (cut exports **before** using reserves)


### 2. New link formation

- countries not directly hit by the production shock use 10% of their reserves to activate new links
- probability of new link established by means of a gravity model (cutoff at 50%)

### 3. Multilayer network


- allow for shock to one commodity to affect other products
- when reserves of a specific commodity are depleted, countries use food reserves of other products according to a country-specific patterns of substitutability

## DUST BOWL SHOCK | NON-COOPERATIVE SETUP



compared to the baseline setup **+3 million** people become undernourished

# Food SYSTEM SHOCK | NON-COOPERATIVE SETUP



compared to the baseline setup **+6.9 million** people become undernourished

## NEW LINK FORMATION

- use a *probit* model to estimate the likelihood of a trade link (corn, rice, wheat) among all country pairs, based on standard “gravity” variables:

$$\begin{aligned}LinkCrop_{ij} = & \beta_0 + \beta_1 \log(Distance_{ij}) + \beta_2 FTA_{ij} + \beta_3 EU_{ij} + \beta_4 ComLangEtno_{ij} + \\& \beta_5 \log(Pop_i) + \beta_6 \log(Pop_j) + \beta_7 \log(GDP_i) + \beta_8 \log(GDP_j) + \\& \beta_9 \log(CropProd_i) + \beta_{10} CropProdShare_i + \beta_{11} UNvote_i + \epsilon_{ij}\end{aligned}$$

- the model correctly classifies 90% of existing links
- a new link is activated if i) the estimated probability is above 0.5; ii) cereals import dependency of country  $i < 0.4$ ; iii) country  $i$  is not directly hit by the production shock
- new export links are ranked according to their probability, and country  $i$  uses up to 10% of its reserve stocks
- between 51 (Dust Bowl - wheat) and 182 (corn) new links are created
- new links created **before** the shocks → comparative statics

# SETUP COMPARISON

## Dust Bowl shock:

| setup     | avg deficit | median deficit | deficit 100 | deficit 250 | top 5 share | HHI   | better | worse | additional undernour. |
|-----------|-------------|----------------|-------------|-------------|-------------|-------|--------|-------|-----------------------|
| baseline  | 59.0        | 3.7            | 23          | 13          | 37%         | 0.046 | —      | —     | 31.9mil               |
| non-coop  | 66.3        | 7.6            | 28          | 13          | 33%         | 0.039 | 0      | 59    | 34.8mil               |
| new links | 59.6        | 3.9            | 23          | 13          | 37%         | 0.046 | 3      | 18    | 31.9mil               |

## Food System shock:

| setup     | avg deficit | median deficit | deficit > 100 | deficit > 250 | top 5 share | HHI   | better | worse | additional undernour. |
|-----------|-------------|----------------|---------------|---------------|-------------|-------|--------|-------|-----------------------|
| baseline  | 141.3       | 60.4           | 63            | 35            | 18%         | 0.019 | —      | —     | 138.2mil              |
| non-coop  | 153.9       | 94.0           | 70            | 39            | 17%         | 0.017 | 0      | 101   | 145.2mil              |
| new links | 141.6       | 60.4           | 63            | 35            | 18%         | 0.018 | 10     | 26    | 138.8mil              |

- non-cooperative behavior significantly affects impact of shocks
- new link formation does not yield great benefit → review setup: more food available implies higher internal absorption
- when more countries are hit, the caloric deficit is (slightly) less concentrated

## OPEN ISSUE: MODEL VALIDATION

---

# MODEL VALIDATION

**Aim:** Validate model accuracy by comparing simulation results with actual post-shock trade patterns

## Case Study: Ukraine Production Shock (2021 → 2022)

| <i>Pre-Shock Trade Position (2021) as BAU scenario</i> |            |            |              |
|--------------------------------------------------------|------------|------------|--------------|
| commodity                                              | production | exports    | export share |
| Wheat                                                  | 32.2M tons | 18.8M tons | 58%          |
| Corn                                                   | 42.1M tons | 24.5M tons | 58%          |

- **Wheat:** 36% decline (-11.5M tons from 32.2M tons)
- **Corn:** 38% decline (-15.9M tons from 42.1M tons)

## COMPARISON: SIMULATION Vs. ACTUAL DATA

*for how many countries/trade flows does the model correctly predicts a reduction?*

- the ability of the model to replicate actual evolution of trade can be tested at the level of each **trade flow**, or aggregating **by country**
- set a minimum threshold to filter small prediction errors (10% or 25%)

| <i>share of correct predictions</i> |           |             |           |             |  |
|-------------------------------------|-----------|-------------|-----------|-------------|--|
| threshold                           | Corn      |             | Wheat     |             |  |
|                                     | Countries | Trade Flows | Countries | Trade Flows |  |
| None                                | 0.59      | 0.31        | 0.44      | 0.36        |  |
| -10%                                | 0.57      | 0.39        | 0.59      | 0.52        |  |
| -25%                                | 0.62      | 0.40        | 0.71      | 0.54        |  |

## COMPARISON: SIMULATION Vs. ACTUAL DATA

for how many countries/trade flows does the model correctly predicts a reduction?

- the ability of the model to replicate actual evolution of trade can be tested at the level of each **trade flow**, or aggregating **by country**
- set a minimum threshold to filter small prediction errors (10% or 25%)

| share of correct predictions |           |             |           |             |
|------------------------------|-----------|-------------|-----------|-------------|
| threshold                    | Corn      |             | Wheat     |             |
|                              | Countries | Trade Flows | Countries | Trade Flows |
| None                         | 0.59      | 0.31        | 0.44      | 0.36        |
| -10%                         | 0.57      | 0.39        | 0.59      | 0.52        |
| -25%                         | 0.62      | 0.40        | 0.71      | 0.54        |

- aggregating at country levels substantially improves performance
- lack of a proper benchmark: **what is “good” performance?**



That's all Folks!



## SUPPLEMENTARY MATERIAL

---

## PRICE EFFECTS

| shock     | Global Kcal shortfall | Price increase | Tot price effect |
|-----------|-----------------------|----------------|------------------|
| Lloyd's   | -6.77%                | 47.41%         | 69.21%           |
| Ukraine   | -0.68%                | 4.75%          | 14.59%           |
| Dust Bowl | -5.64%                | 39.48%         | 57.63%           |

Total price effect computed as:  $\Delta P = 7 \cdot -\Delta Kcal \cdot \frac{\sum_c p_c}{\sum_{c,shock} p_{c,shock}}$ , where  $p_c$  is the price of the different staple commodities (corn, rice, wheat and soybean) and  $p_{c,shock}$  is the price of the commodities affected by the shock:

- LLoyd's: corn, rice, wheat
- Ukraine: corn and wheat
- Dust Bowl: corn, rice and wheat

## MULTI-LAYER NETWORK

**Aim:** allow for shocks to one commodity to affect other products

- countries first use reserves of the crop that is affected by the decrease in production/imports (e.g. corn to compensate for a reduction in corn availability)
- when these reserves are depleted, countries can tap into food stocks of other commodities (if available), according to a specific *degree of substitutability* between crops in that country
- substitutability computed using actual data on food shares (from FAO Food Balance Sheets): substitution more likely when dietary diversity already high
- this mechanism creates a **link across commodities**: shock to one crop can impact other products (**via** absorption of **reserves**), although there is no *direct* shock transmission across commodities
- **modeling issue**: how do we deal with simultaneous shocks to different commodities? how are concurrent claims on reserves handled?

details

## SETUP COMPARISON: NEWLINKS - BASELINE

Comparison of the setup with new links with respect to the baseline: number of countries with a caloric deficit smaller, equal or larger than in the baseline setup

| shock       | total caloric deficit |       |                      |
|-------------|-----------------------|-------|----------------------|
|             | new links < baseline  | equal | new links > baseline |
| Dust Bowl   | 10                    | 83    | 53                   |
| Food System | 17                    | 52    | 77                   |

- the size of the difference is very small: median value = 0, values range between -17 and +29 Kcal/per capita/day (-16 to +14 in the Food System shock scenario)

# DEGREE OF SUBSTITUTABILITY ACROSS PRODUCTS

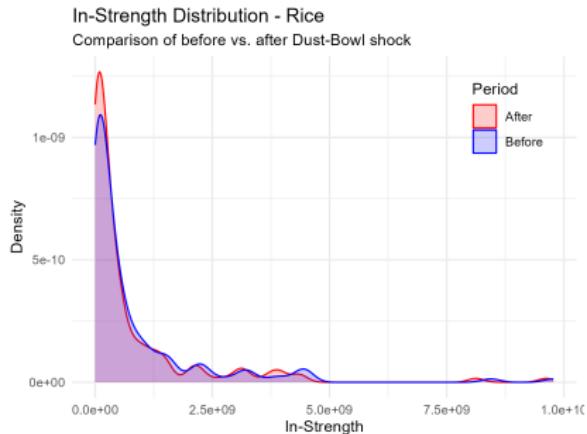
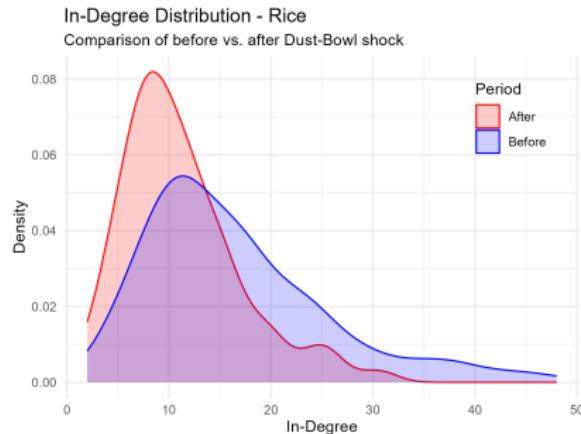
The degree of substitutability (DS) is computed as follows:

- for each country  $j$  and commodity pair (e.g., corn-wheat) compute the absolute differences ( $\delta_j$ ) between their shares ( $s_c$ ) in the national food consumption (in kcal, per crop, per capita)
- $DS_{j,(corn-wheat)} = (1 - \delta_{j,(corn-wheat)})(1 - \max(\delta_j)) \left( \frac{s_{corn} + s_{wheat}}{2/3} \right)$
- $DS_{j,(corn-rice)} = (1 - \delta_{j,(corn-rice)})(1 - \max(\delta_j)) \left( \frac{s_{corn} + s_{rice}}{2/3} \right)$
- $DS_{j,(rice-wheat)} = (1 - \delta_{j,(rice-wheat)})(1 - \max(\delta_j)) \left( \frac{s_{rice} + s_{wheat}}{2/3} \right)$
- DS ranges between 0 (low) and 1 (high);

e.g. corn 80%, rice 15%, wheat 5%

$$DS_{j,(corn-rice)} = (1 - 0.65) \cdot (1 - 0.75) \cdot 0.95 / (2/3) = 0.125$$

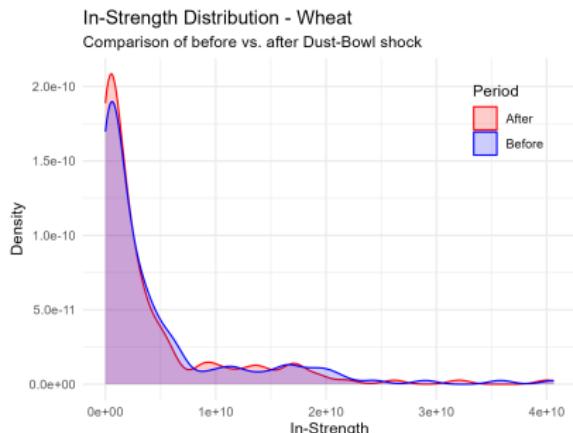
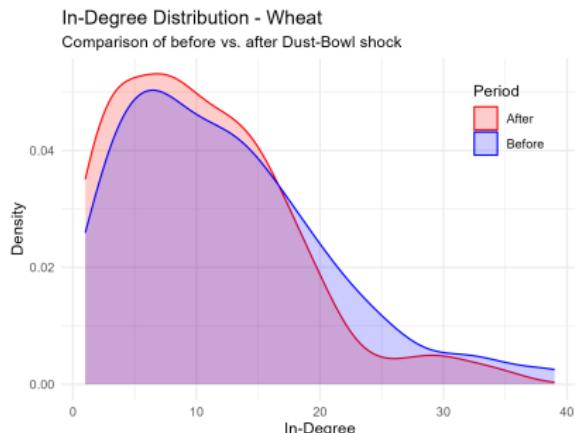
$$DS_{j,(corn-wheat)} = (1 - 0.75) \cdot (1 - 0.75) \cdot 0.95 / (2/3) = 0.080$$



$$DS_{j,(rice-wheat)} = (1 - 0.10) \cdot (1 - 0.75) \cdot 0.95 / (2/3) = 0.068$$

- the average DS across countries (in 2016–18) for corn-wheat is 0.21, for corn-rice is 0.20, and for rice-wheat is 0.26

back

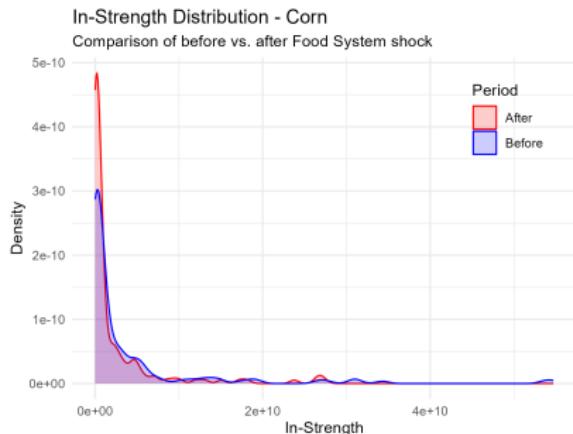
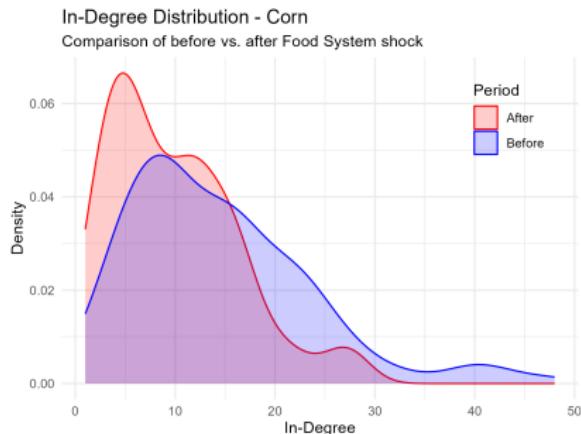
# IMPACT ON IN-DEGREE & IN-STRENGTH DISTRIBUTION



## Rice - Dust Bowl shock



- 32% links dropped

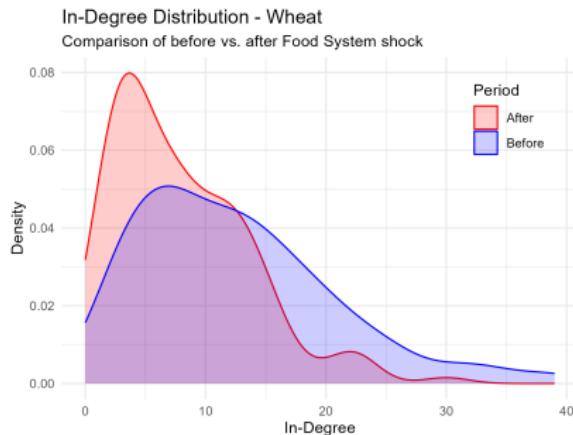
# IMPACT ON IN-DEGREE & IN-STRENGTH DISTRIBUTION



## Wheat - Dust Bowl shock



- more limited impact: 14% links dropped

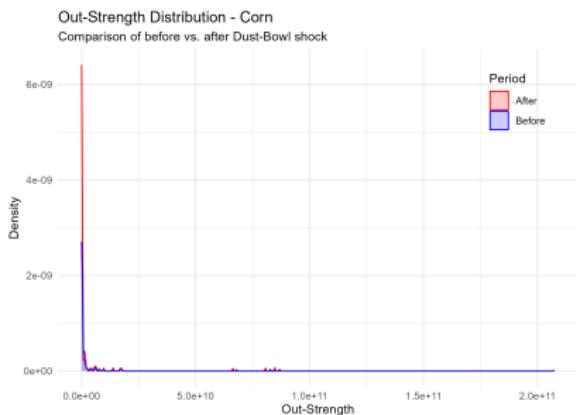
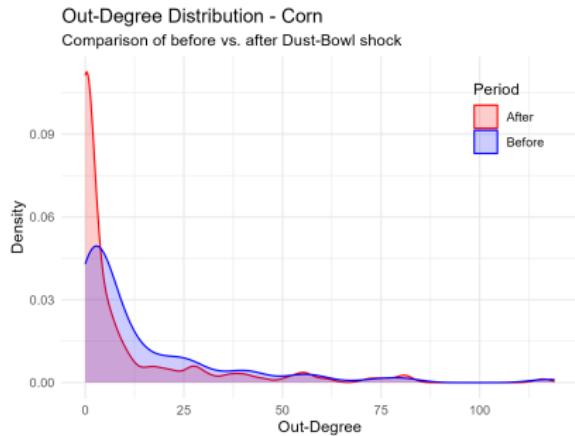
# IMPACT ON IN-DEGREE & IN-STRENGTH DISTRIBUTION


## Corn - Food System shock



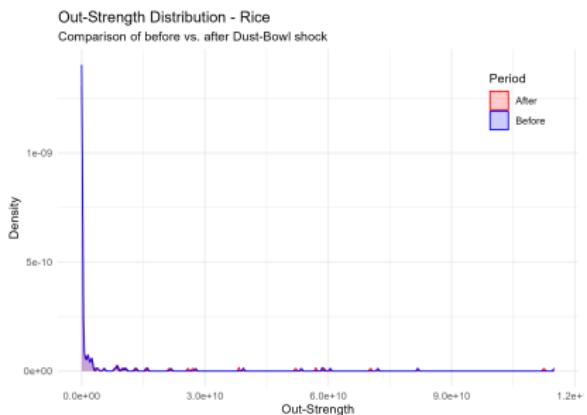
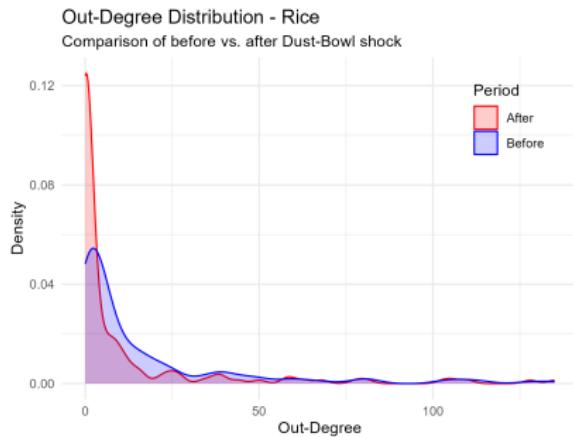
- 32% links dropped

# IMPACT ON IN-DEGREE & IN-STRENGTH DISTRIBUTION



## Wheat - Food System shock

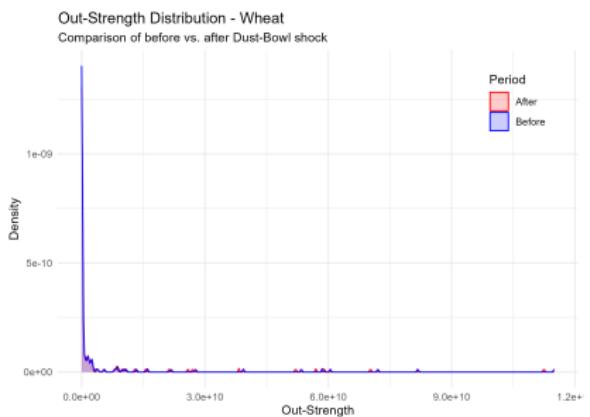
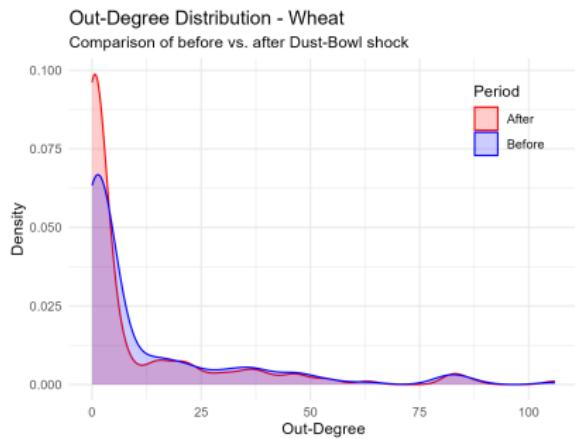


- 37% links dropped



# IMPACT ON OUT-DEGREE & OUT-STRENGTH DISTRIBUTION

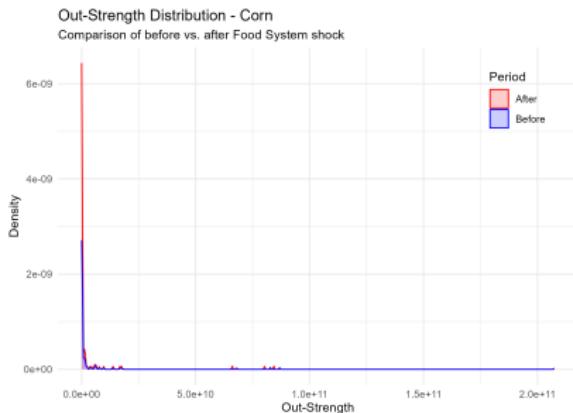
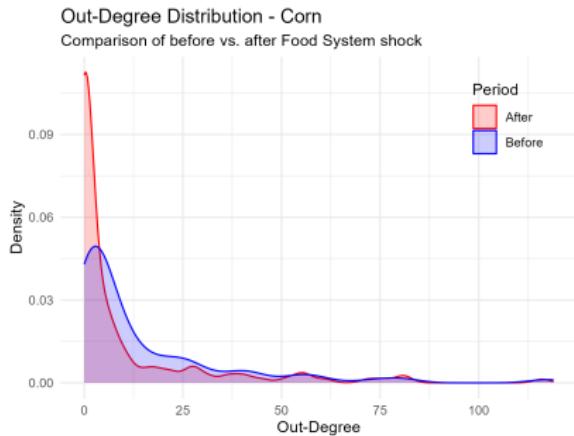
## Corn - Dust Bowl shock





# IMPACT ON OUT-DEGREE & OUT-STRENGTH DISTRIBUTION

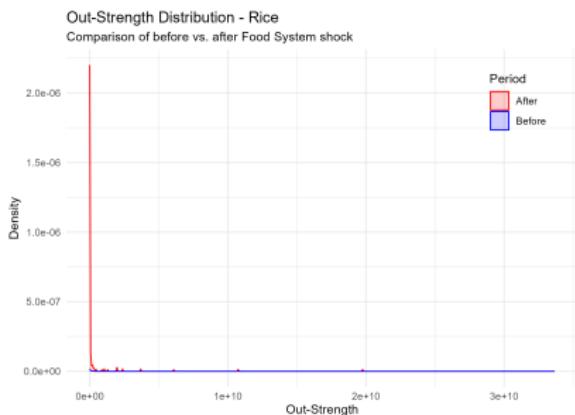
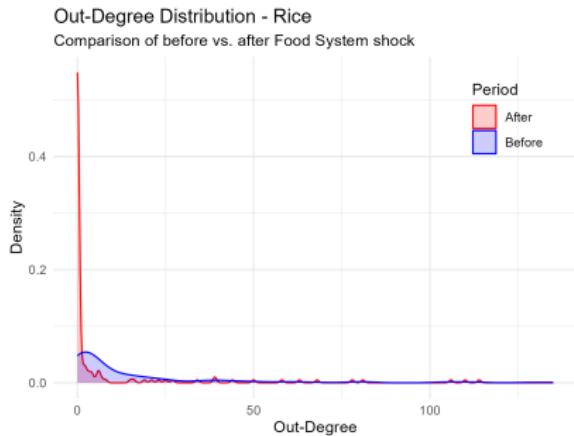
## Rice - Dust Bowl shock





# IMPACT ON OUT-DEGREE & OUT-STRENGTH DISTRIBUTION

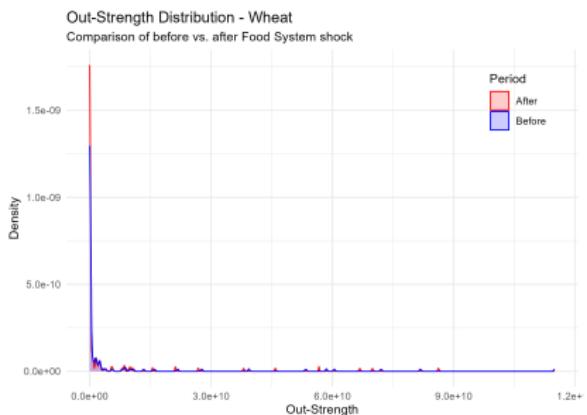
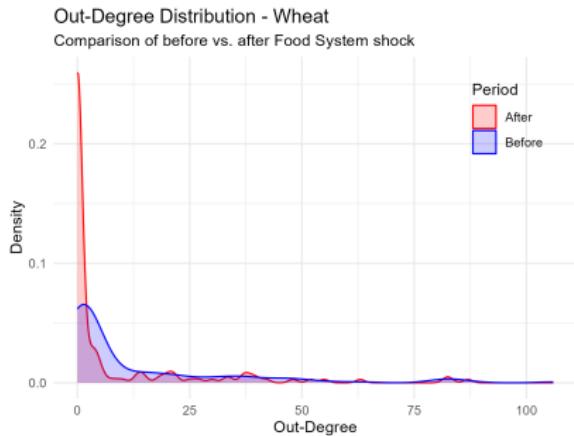
## Wheat - Dust Bowl shock





# IMPACT ON OUT-DEGREE & OUT-STRENGTH DISTRIBUTION

## Corn - Food System shock





# IMPACT ON OUT-DEGREE & OUT-STRENGTH DISTRIBUTION

## Rice - Food System shock



# IMPACT ON OUT-DEGREE & OUT-STRENGTH DISTRIBUTION

## Wheat - Food System shock

